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Hall viscosity, by definition, is related to the stress response of the system to the perturbation of
the metric [1, 2]. In this note, however, we will follow the work of Hoyos and Son [3] to show that
Hall viscosity also appears in pure electromagnetic reponse of finite wave vector in any system with
equal charge/mass ratio and Galilean invariance.

致虚极，守静笃。万物并作，吾以观其复。

—— 老子「道德经」
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I. MOTIVATION: PHYSICAL ARGUMENT

To the lowest order approximation (of wave vector), the velocity of an electron in a plane with external electrical
field along x direction E = Exx̂ and magnetic field piercing throught the plane B ≡ Bẑ satisfies

q(vyB + Ex) = 0. (1)

If we turn on the x-dependence of the scalar potential Ex(x) = −∂xϕ(x), as is illustrated in FIG. 1, then the shear
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FIG. 1: An example of inhomogeneous Ex distribution and vy distribution along x-direction.

flow (fluctuating vy(x) distribution) will give a nonzero strain rate, which, in turn leads to an additional
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stress with the existence of Hall viscosity1. Such extra force will modify the original force balance
condition, inducing a correction to the charge current along y-direction, i.e., the finite-q correction of
the electromagnetic response.

More precisely, the strain rate u̇xy = u̇yx = 1
2 (

∂u̇y

∂x + ∂u̇x

∂y ) = 1
2∂xvy, induces through Hall viscosity ηA = ηxxxy =

ηxxyx a correction to the stress σxx = −ηxxxyu̇xy − ηxxyxu̇
yx = −2ηAu̇xy. Therefore, there will be a correction to the

force along x-direction (since σxy = 0)

fx = −∂xσxx = 2ηA∂xu̇
xy = ηA∂2xvy(x).

And the force balance condition becomes

q(vy(x)B + Ex(x)) + fx[vy(x)] = 0. (2)

Inserting the zeroth-order expression of vy in (1), we get the first-order correction to the velocity ∆vy, and the
correction to the charge current

∆jy = q∆vy = −fx
B

= − η
A

B2
∂2xEx(x).

Thus the first-order correction to transverse conductivity reads

σ(1)
xy (q) =

ηA

B2
q2. (3)

However, the first-order correction to the current not only comes from the extra stress, but also the extra fluctuation
of the magnetization ∆j = ẑ ×∇δM . This is because the curl of the velocity field 1

2∂xvy can also be interpreted as
a local angular velocity field

Ω(x) ≡ 1

2
∂xvy = − 1

2B
∂xEx(x).

Namely the lab frame is relatively rotating with the quantum fluids in the angular velocity Ω(x). By
anology of the Coriolis force and Lorentz force2, in the frame of fluids there is an extra local fluctu-
ation of the magnetic field δB = 2mΩ/e through inhomogeniety of Ex(x). Because quantum Hall fluid is a
diamagnetic material, given the B-dependent energy density the magnetization reads M = −∂ε/∂B. Magnetization
is a constant in the usual case. However, due to the fluctuation of the effective magnetic field, we have

δM = − ∂2ε

∂B2
δB = ε′′(B)

m

eB
∂xEx.

And the additional correction to the transverse current is

∆jy = ẑ × ∂x(δM) = ε′′(B)
m

eB
∂2xEx,

giving

σ(2)
xy (q) = −mε

′′(B)

eB
q2. (4)

Combining (3) and (4), we get the main results

σxy(q)

σxy(0)
= 1 +

[
ηA

nh̄
− 2π

ν

ℓ2

h̄ωc
B2ε′′(B)

]
(qℓ)2 +O((qℓ)4). (5)

Read shows [4] that the Hall viscosity ηA = 1
2ns̄h̄ so the first part in the square bracket is universal. As for the second

part (which is clearly system-depent), its magnitude can be obtained by exerting external magnetic fluctuations δBext.
The logic is the same as we have shown above. Thus measurable finit-q dependence of the Hall conductivity
does give the Hall viscosity.

1 Recall the adiabatic interpretation of the Hall viscosity σαβ ≡ λαβγδu
γδ − ηαβγδu̇

γδ

2 Coriolis force F = ev ×B; Lorentz force F = qv ×B.
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II. EFFECTIVE FIELD THEORY OF QUANTUM HALL FLUIDS

In this section, we will prove that the two parts in the square bracket of (5) is fixed by the symmetry-allowed
effective field theory (even with their coefficients).

A. Non-relativistic General Coordinate Transformation

The general rules to write down an effective field theory is by power counting and listing all symmetry
allowed terms with some unknown coefficients. However, there is one more requirement that is naturally
satisfied in relativistic EFT so may be frequently omitted in the other cases — the special/general covariance principle,
or diffeomorphism covariance, stating that the form of physical laws (or in EFT the form of action) remains
unchanged under any general coordinate transformation. For example, a relativistic theory of free massive
bosonic complex scalar field in (curved) (3 + 1)-D spacetime M have the action

S = −
∫

d4x
√
−g(gµν∂µΨ∗∂µΨ+m2c2|Ψ|2). (6)

Taking the bosonic field operator Ψ as the scalar field on the manifold Ψ : M → R, then as a scalar, the action is
certainly invariant under general transformation xµ 7→ x′

µ:

Ψ(x) → Ψ(x′), gµν(x) → g′µν(x
′) ≡ ∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x(x

′)),

or infinitesimally x′µ = xµ + ξµ such that

δΨ = −ξλ∂λΨ, δgµν = −ξλ∂λgµν − gλν∂µξ
λ − gµλ∂νξ

λ. (7)

Interacting terms of higher orders should also satisfy such diffeomorphism invariance (7).

∗ ∗ ∗

Now if we switch to consider the non-relativistic EFT of a free massive3 boson/fermion coupling with external U(1)
gauge field in (3 + 1)-D

S =

∫
dtdx√g

[
i

2
ψ†

↔
∂tψ −A0ψ

†ψ − gij

2m
(∂iψ

† − iAiψ
†)(∂jψ − iAjψ)

]
, (8)

then with the same reason, besides of the familiar local U(1) gauge invariance

ψ → ψ′ = eiαψ, A0 → A′
0 = A0 − α̇, Ai → A′

i = Ai − ∂iαi,

there should be an extra diffeomorphism invariance under xi → x′
i for the spatial part of the action

ψ(t,x) → ψ(t,x′), A0(t,x) → A0(t,x
′), Ai(t,x) → Ai(t,x

′), gij(t,x) → g′ij(t,x
′) =

∂xk

∂x′i
∂xℓ

∂x′j
gkl(t,x(x

′)),

or infinitesimally

δψ = iαψ − ξk∂kψ, (9a)
δA0 = −α̇− ξk∂kA0, (9b)
δAi = −∂iα− ξk∂kAi −Ak∂iξ

k, (9c)
δgij = −ξk∂kgij − gik∂jξ

k − gkj∂iξ
k. (9d)

3 For massless Dirac fermion, things get more complicated. The problem is, the Dirac spinor are the basis of the half-integer spinor
representation of sl(2,C). They cannot be constructed from any tensor representations (of integer highest weight). However, in GR
covariance principle requires all physical object being tensor fields. Thus we have to use viebein formalism to making GR a gauge theory
as well. See my writing notes.



4

Direct calculation shows that action (8) is indeed invariant under equations (9a) to (9d), providing that spatial
variation is time-independent ξi = ξi(x).

However, the spatial part of the action keeps to be a scalar no matter ξi depends on time or not (as a contrast,
the U(1) phase depends both on space and time α = α(t,x)). Hence we expect the diffeomorphism invariance also
applies to time-dependent spatial variations ξi = ξi(t,x). This time, the action will acquire a residual term under the
above infinitesimal transformations equations (9a) to (9d)

δS = − i

2

∫
dtdx ξ̇kψ†

↔
∂kψ. (10)

That is to say, to keep the diffeomorphism invariance for general α(t,x) and ξi(t,x), we have to modify the infinitesimal
transformation to the so-called non-relativistic general coordinate transformations [5]

δψ = iαψ − ξk∂kψ, (11a)
δA0 = −α̇− ξk∂kA0−Ak ξ̇

k, (11b)
δAi = −∂iα− ξk∂kAi −Ak∂iξ

k+mgik ξ̇
k, (11c)

δgij = −ξk∂kgij − gik∂jξ
k − gkj∂iξ

k. (11d)

The Galilean invariance on flat space gij = δij can be seen by particular choice of α = mvix
i and ξi = vit, giving

ψ(t,x) → ψ′(t,x) = eimv·xψ(t,x− vt),

A0(t,x) → A′
0(t,x) = A0(t,x− vt)− v ·A(t,x− vt),

A(t,x) → A′(t,x) = A(t,x− vt).

So what we have done in equations (11a) to (11d) is actually one (natural) way of gauging the non-relativistic
translation symmetry and Galilean symmetry of the flat space to the curved background. And the
“naturality” can be seen from the Kaluza-Klein reduction of the relativistic diffoemorphism transformation by taking
the limit c→ ∞. Please refer to the section 3.2 of [5] for details.

B. Wen-Zee Term of Quantum Hall Fluids

The lowest-order bulk effective action of FQHE on a flat space is known to be

S[aµ, Aµ] =

∫
d3x

( ν

4π
εµνρaµ∂νaρ −

e

2π
εµνρAµ∂νaρ

)
, (12)

where aµ is called the hydrodynamic4 gauge field of the local conserved current Jµ ≡ 1
2π ε

µνρ∂νaρ such that ∂µJµ ≡ 0.
Integration of the hydrodynamic fields leads to the induced action of external gauge fields, that expresses the Chern-
Simons type response to the electromagneitc background

Seff[Aµ] =
ν

4π

∫
A ∧ dA. (13)

The filling factor ν (an integer from quantization) is usuall related with the number of electrons Ne and number of
fluxes Nϕ by ν ≡ Ne/Nϕ. However, it was observed by Haldane early in 1983 in [8] that the Laughlin function for
the fully-filled LLL ν = 1 on a spherical geometry has 2S + 1 = Ne degeneracy5, while Dirac quantization condition
demands 2S = Nϕ. Thus on a sphere we have

Nϕ = ν−1Ne + S (14)

4 Wen construct the “hydrodynamic” theory in [6, 7] of bulk FQH fluids by assuming the action to be local functional of the conserved
currents S[Jµ]. But this is more like writing down an effective field theory but NOT the standard hydrodynamic theory. In modern
hydrodynamic theory we construct the conserved quantities with hydrodynamic variables by the second law of thermodynamics.

5 It is because the Hamiltonian has su(2) symmetry, so the Laughlin function also furnishes as the representation of su(2) Lie algebra,
which is labeled by its highest weight (angular momentum) S and has 2S + 1 degeneracy.
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with the (Wen-Zee) shift S = 1. Similarly, if the only the second Landau level is fully-filled ν = 1, the degeneracy
is increased to 2S + 3 = Ne while the Dirac quantization condition 2S = Nϕ remains unchanged. So in this case we
have rather S = 3.

Such weird shift does not come into the view of the mainstream untile Wen and Zee developed the general effective
field theory of the abelian FQH fluid [6] (with arbitrary orders of virtual excitation of quasiparticles/quasiholes and
residual physical excitation of quasiparticles/quasiholes)

L[aIµ, Aµ, jqp] = − 1

4π
KIJε

ενρaIµ∂νa
J
ρ − 1

2π
tIε

µνρAµ∂νa
I
ρ + jµqpℓIa

I
µ. (15)

They noticed that if EFT (15) is used to describe the ground state of fully-filled lowest and second LL on a sphere,
they should have the same K-matrix K11 = 1, charge vector tI = (1, 0)T , and vector ℓI = 0. Thus the effective
field theory (15) still does not provide a complete description of the QH liquids.

So how to improve this? The answer is almost straight forward: recall that (15) is constructed without any
information of the background, so we must miss some relevant terms describing the coupling with the geometry. And
because the original EFT is written in terms of hydrodynamic gauge fields, it is also helpful to formulate the general
relativity as a gauge theory for a unified description. More specifically, given a tagent bundle TM (or more general
a tensor bundle T r

s (M)) with the base manifold equipped with a metric structure, there is a canonical choice of the
basis of each tagent space TpM from the basis {∂/∂xµ} by a proper orientation-preserving rotation ea ≡ e µ

a
∂

∂xµ for
e µ
a ∈ GL(n,K) such that

e µ
a e

ν
b gµν ≡ δab.

The LHS is just inner produce of two basis 〈ea, eb〉 ≡ g(ea, eb) = e µ
a e

ν
b gµν , so we are actually working on a orthogonal

frame bundle with the gauge group O(n).
For the special three-dimensional non-relativistic product manifold where time is isolated M = R×N , the metric

is only curved on the spatial manifold N (while keeping vanishing for space-time and time-time components g00 =
g0i = 0), so are the local invertible rotation

e i
a e

j
b gij ≡ δab. (16)

For those non-invertible matrix, we can simply assume that e µ
A and eAµ vanishes for all space-time, time-space and

time-time components (µ = 0, 1, 2 and A = 0, 1, 2).
Now that the structure group is O(2) ' U(1), we can treat the hydrodynamic gauge field a ≡ aµ dxµ and the

(matrix-valued) connection 1-from ωa
b ≡ ω a

µ b dxµ of the frame bundle in a unified way. The latter one can be
determined from Cartan’s first structure equation (for torsion free manifold)

de+ ω ∧ e = 0,

or in space-time components ∂µeAν + ω A
µ Be

B
ν = 0. After contraction with eCλδBC and gνλ, we get

ωµAB =
1

2
∂µeAλ · e λ

B ,

which is antisymmetric in the last two subsripts ωµAB ≡ −ωµBA since eAλe
λ
B ≡ δAB .

Denoting ωC
µ ≡ 1

2ε
ABCωµAB , then

ωa
µ ≡ 1

2
εb0aωµb0 =

1

4
εb0ae λ

0 ∂µebλ ≡ 0, a = 1, 2,

because e λ
0 ≡ 0 by construction. While

ω0 ≡ ω0
0 =

1

2
εabeaj∂0e

b
j , ωi ≡ ω0

i =
1

2
(εabeaj∂ie

b
j − εjk∂jgik).

Before using aµ and ωµ to construct the EFT of quantum Hall fluids on a curved background, we have to specify
the power counting of our theory. There is an ambiguity in choosing the counting scheme because the time
derivative and spatial derivative can in principle have different powers of the expansion parameter. For
definiteness, we will demand all quantities proportional to the power of the small6 energy density ε(B), times power

6 For example, in FQHE of filling ν < 1, we have ε(B) = ν
4π

h̄ωc
ℓ2

.
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of cyclotron frequency ωc and magnetic length ℓ. All external fields vary slowly in space and time, but in different
order

∂0 ∼ ε2ωc, ∂i ∼ εℓ−1.

And the magnitude of external perturbation to be

δA0 ∼ ε0ωc, δAi ∼ ε−1ℓ−1, δgij ∼ ε0

such that the variation of potential A0 ∼ O(1), magnetic field B = εab∂aAb ≡ εij∂iAj/
√
g ∼ O(1), and the metric

δgij ∼ O(1) are allowed, while the electric field is small Ei = ∂iA0 − ∂0Ai ∼ O(ε). Under this scheme, the Chern-
Simons action (13) is of order O(1). And the spin connection is of order ωµ ∼ O(ε2) from (16).

Since ωµ has the same role as Aµ, we can safely write down the most relevant terms for EFT (called Wen-Zee term)

SWZ =
k

2π

∫
d3x εµνρωµ∂νAρ, (17)

and

SGrav. C-S = c

∫
d3 εµνρωµ∂νωρ. (18)

However, SGrav. C-S is of order O(ε4) so will not be considered in this letter.
The Riemann curvature tensor can be obtained from the Cartan’s second structure equation

dωa
b + ωa

c ∧ ωc
b = Ra

b,

giving the Ricci tensor

Rab
ij = (∂iωj − ∂jωi)ε

ab =⇒ R = 2
εij∂iωj√

g
.

So Wen-Zee term can be re-arranged into

SWZ =
k

2π

∫
d3x

(√
g

2
A0R+ εijȦiωj +

√
gBω0

)
. (19)

Together with the electromagnetic Chern-Simons action (13), then the total number of electron is (collecting terms
coupling with A0)

Ne ≡
∫

d2x
√
gJ0 =

∫
d2x

√
g

(
ν

2π
B +

k

4π
R

)
≡ νNϕ + kχ ≡ νNϕ + νS, (20)

where Gauss-Bonnet theorem is used and χ ≡ 2(1 − g) is the Eular character. For spherical geometry χ = 2, so the
Wen-Zee shift satisfies k = 1

2νS.

C. Hall Viscosity
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